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ABSTRACT

ON EXTENDING GROUP ACTIONS FROM SURFACES TO THREE
SPHERE

Erdoğan Damla,

M.S., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Semra Pamuk

June 2022, 66 pages

Even though surfaces are the most elementary objects in geometry and topology, be-
cause of the variety of structures they have it is still an active area of research. The
symmetries of surfaces have been studied for a long time. One of the compelling ques-
tions is which of these symmetries can be extended to handlebodies and 3-sphere. In
this thesis, we are focusing on the symmetries of surfaces which can be embedded
into the symmetries of 3-sphere. The aim is to give an overview of the problem with
some background and present some of the known results with proofs.

Keywords: Finite group actions, extendable map, symmetry of surfaces, symmetry of
3-sphere
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ÖZ

YÜZEYLERDEKİ GRUP ETKİLERİNİN ÜÇ BOYUTLU KÜREYE
GENİŞLETİLMESİ ÜZERİNE

Erdoğan Damla,

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Semra Pamuk

Haziran 2022 , 66 sayfa

Yüzeyler geometri ve topolojinin en temel nesneleri olmasına rağmen, üzerlerine ko-
nabilecek yapıların çeşitliliğinden hala aktif bir araştırma alanıdır. Yüzeylerin simet-
rileri uzun bir süredir çalışılmaktadır. Zorlayıcı sorulardan biri de bu simetrilerden
hangisinin kulplara ve üç boyutlu küreye genişletilebileceğidir. Bu tezde, üç boyutlu
küre simetrilerine gömülebilecek yüzey simetrilerine odaklanıyoruz. Amacımız bi-
raz alt yapı ile probleme genel bir özet vermek ve bazı bilinen sonuçları kanıtlarıyla
birlikte sunmaktır.

Anahtar Kelimeler: sonlu grup etkileri, genişletilebilir fonksiyon, yüzeylerin simet-
risi, 3 boyutlu kürenin simetrisi
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CHAPTER 1

INTRODUCTION

Given a group G and a surface Σ, we say that a group G acts on Σ if there is an

injection G ↪→ Sym(Σ), where Sym(Σ) represents symmetries of the surface, for

example we consider it as self-homeomorphisms of the surface. The symmetries of

surfaces have been investigated for a long time. If we consider Σ as a Riemmann

surface, then we can consider Sym(Σ) as group of automorphisms of Σ, which are

conformal self-homeomorphims and denoted byAut(Σ). It is also known that for any

G action on a compact orientable surface by orientation-preserving homeomorphisms

there exists a complex structure on the surface so that the group action is given as

automorphisms of surface. Schwarz proved at the end of nineteenth century that

Aut(Σg) of a compact Riemann surface Σg of genus g ≥ 2 is finite, and then Hurwitz

[7] showed by using Riemann-Hurwitz formula that its order is at most 84(g − 1).

This bound is attained for infinitely many g, the smallest example is Klein’s quartic,

with genus 3 that has 84(3 − 1) = 168 automorphisms. In general, for a fixed genus

g it is hard to determine the maximum order. So we have a bound for the order of

the finite groups acting on surfaces. To elaborate one can ask what is the maximum

order of all finite cyclic or abelian groups that can act on surface of genus g? It has

been shown that the 4g + 2 is the bound for cyclic [17] and 4(g + 1) is the bound for

abelian [8].

Same questions are also asked for handlebodies, what is the maximum order of all

finite (cyclic, abelian) groups which can act on handlebody Hg of genus g? It has

been shown by Zimmermann[22] that the bound for the order of all finite groups that

act on a genus Hg is 12(g − 1). A handlebody orbifold theory has been developed to

show this result and also it has been shown that the bound for cyclic ones is 2g + 2
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for g even and 2g for g odd.

One of the natural questions to ask is which of the finite group actions on a surface Σg

of genus g extends to a handlebody Hg . Then we can also ask when these actions can

be embedded in S3? In this thesis, we will focus on the latter question and will try to

give an overview of the known results and the techniques used in the proofs. More

elaborately, suppose we are given a finite group G acting on a genus g surface Σg and

an embedding σ : Σg → S3 such that G acts on (S3,Σg) such that the restriction of

the action on Σg is the given action of G on Σg. In this case the action of G on Σg is

called extendable over S3 via σ.

Note that the embedding σ : Σg → S3 can be knotted, but we will focus on the

unknotted embeddings, i.e. each component of S3 \ Σg is a handlebody. So for each

extendable action ofG we have aG-invariant Heegaard splitting of S3. Likewise, one

can define an action of G on Hg to be extendable, and an embedding e : Hg → S3

to be unknotted if the complement S3 \ Hg is also a handlebody. For each g, an

unknotted embedding is unique up to isotopy of S3 and automorphisms on Σg or Hg.

In the search of such extendable actions one first tries to give the maximum order of a

finite (cyclic and abelian) groups acting on Σg which extends to S3 with respect to an

unknotted embedding. The methods depend on orbifold theory, because the problem

of finding such actions can be translated to finding some 2-orbifolds in certain spher-

ical 3-orbifolds, which will be explained in Chapter 3. In chapter 2, the necessary

background on group actions, low dimensional topology and orbifold theory will be

given in order to understand the proofs in Chapter 3. In Chapter 4, we will give some

examples of extendable actions.
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CHAPTER 2

BACKGROUND

In this chapter we will introduce some definitions and theorems as background mate-

rial which will be needed throughout the thesis.

2.1 A Glimpse on Group Actions

In this section, we give some basic notions of group actions on a manifold. More

specifically, we will deal with the finite group actions on mostly 2-manifolds.

Definition 2.1.1. An action of a group G on a manifold M is a continuous map

θ : G×M →M

which satisfies for every g, h ∈ G and x ∈M

(i) θ(1, x) = x

(ii) θ(gh, x) = θ(g, θ(h, x))

We call an action effective (or faithful) if the condition g · x = x for all x ∈ M

implies that g is the identity element. Throughout this thesis all actions are assumed

to be effective.

For example, the action of the cyclic group Zn on the sphere S2 acting by 2π
n

- ro-

tations of the sphere with rotation of axis from the north pole to the south pole is

an effective group action. The action is actually orientation-preserving since it is by

rotations.

3



Definition 2.1.2. Given an action of G on M , the quotient space M/G endowed with

the quotient topology and the equivalence relation x ∼ gx is called the orbit space of

the action of G on M . Moreover, the quotient map π : M →M/G is called the orbit

map.

Example 2.1.1. The antipodal map x 7→ −x on S2 gives an orientation reversing

action of Z2. Moreover, the orbit space of this action is the real projective plane

S2/Z2
∼= RP 2.

Definition 2.1.3. For every point x ofM , the subgroup ofG consisting of the elements

which fixes the point x under this action is called the isotropy subgroup of x, denoted

by Gx. That is,

Gx = {g ∈ G | gx = x}
Moreover, if each isotropy subgroup is trivial, then the action of G is said to be free.

Definition 2.1.4. A group G is said to act properly discontinuously on M if for every

x ∈ M there is a neighborhood U of x such that gU ∩ U 6= ∅ only for finitely many

group elements g ∈ G.

The group action given in the Example 2.1.1 is also an example of both a properly

discontinuous and free action.

2.2 An Overview of Knots and Links

As we know that a knot is an embedding of S1 into R3 and we always represent knots

as diagrams in R2 by means of a regular projection.

Definition 2.2.1. Let a diagram of a knot K be given. An overpass in a diagram is

defined to be a subarc of the knot passing over at least one crossing but not passing

under a crossing.

A maximal overpass is the overpass which is the longest, i.e. both endpoints of the

arc ends before an undercrossing [1].

Definition 2.2.2. The bridge number of a knot is the number of maximal overpasses

among all projections [1].

4



Figure 2.1: (a) an overpass which is not maximal & (b) a maximal overpass [1]

Remark 2.2.1. If a knot has bridge number 1, then it is the unknot.

Example 2.2.1. Both the trefoil and the figure-eight knot have bridge number 2,

where the corresponding bridges are shown in Figure 2.2.

Figure 2.2: (a) trefoil knot & (b) figure-eight knot [1]

Definition 2.2.3. A part of a knot or link projection intersecting a circular region four

times is called a tangle [1].

Figure 2.3: some examples of tangles from [1]

Let two horizontal strings be given. Then one can wind the strings around each other

a number of times. Let us call this operation as "twist". Also one can rotate the

horizontal tangle by 90◦ to get a vertical tangle and then continue twisting the ends of

the vertical tangle a number of times again. Let us call this operation as "rotation".

5



Definition 2.2.4. (Construction of rational tangles) Let two horizontal strings be

given. The tangle obtained by the applying the twist & rotation operations in a se-

quence is called a rational tangle [1].

Figure 2.4: Example of rational tangles [1]

In Figure 2.4, one can see the stages of obtaining the rational tangle on the right-hand

side. The operations are 3 twists, 1 rotation, 2 twists, 1 rotation, and then 4 twists in

the opposite direction. Or simply one can use the notation 3 2 − 4, which counts the

twists only.

In short one can represent a rational tangle by the notation abcd...kl where each letter

stands for a twist and after each letter the tangle is rotated.

There is a one to one correspondence between rational tangles and the set of natural

numbers Q by the continued fraction

l +
1

k +
1

. . . +
1

d+
1

c+
1

b+
1

a

for the tangle abcd...kl. Therefore, two rational tangles are the same if and only if

their corresponding continued fractions are the same [1].

Definition 2.2.5. Let p and q be relatively prime. The knot Tp,q of type (p, q) is called

a torus knot if it wraps the solid torus in the direction of its longitude p-times and in

the direction of its meridian q times.

6



Figure 2.5: torus knots of type (2, 5) and (5, 6) resp. [14]

2.2.1 Wirtinger Presentation

Let a knot (or a link) K in R3 or (S3) be given. Then one can associate a group to K,

which is the fundamental group of the knot complement R3 \ K. This is called the

knot group [18].

Let α1, α2, ..., αn be the oriented arcs in the diagram of the knot K. (The arcs are

being labelled so that its endpoints are undercrossings.) Then π1(R3\K) is generated

by the loops xi which go around these arcs. (Figure 2.6)

• If the crossing type is as in part (1) of the Figure 2.6, then the curve

xix
−1
j x−1

i+1xj contracts to a point. Therefore, xix−1
j x−1

i+1xj = 1 must hold, i.e.

xjxi = xi+1xj .

• Similary, if the crossing type is as in part (2) of the Figure 2.6, then the curve

xixjx
−1
i+1x

−1
j contracts to a point. Therefore, xixjx−1

i+1x
−1
j = 1 must hold, i.e.

xixj = xjxi+1 [18].

Note that the two other possibilities of the crossing type give the opposite orientation

of K and they give the same relations as above.

For n-crossings in the diagram there will be n-arcs. For those n-arcs, there will

be n-generators, say x1, x2, ..., xn. Also there will be n-relations coming from each

crossing, say r1, r2, ..., rn.

Hence the knot group is given by π1(R3 \K) =< x1, x2, ..., xn| r1, r2, ..., rn > [14].

Example 2.2.2. Let us compute the knot group of the trefoil with the given orientation

and generators as in Figure 2.8.

7



Figure 2.6: on computation of a knot group [18]

Let A,B,C be the crossing points and let α1, α2, α3 be the arcs on the knot. The

curves drawn around the points A,B,C retracts to a point. Therefore we have the

following relations:

Figure 2.7: trefoil knot [14]

• For A: xz−1y−1z = 1 (1)

• For B: zy−1x−1y = 1 (2)

• For C: yx−1z−1x = 1 (3)

From (1), we have x = z−1yz. Substitute this in (2) and (3) to get zyz = yzy. We

observe that (yzy)2 = (zyz)(zyz) = (zy)3. Let a := yzy and b := zy. Then the

8



Figure 2.8: computation of the knot group of a trefoil [18]

generators y and z can be obtained from a and b since y = ab−1 and z = b2a−1.

Similarly, x can be written in terms of a and b. Therefore, the knot group of trefoil is

as follows: π1(R3 \K) =< x, y, z| xz−1y−1z = 1, zy−1x−1y = 1, yx−1z−1x = 1 >

=< a, b| a2 = b3 >.

2.3 Heegaard Splittings

Definition 2.3.1. The orientable 3-manifold with boundary is called a handlebody of

genus g if it is obtained by gluing g copies of 1-handles of the form D2 × [0, 1] to

a 3- ball D3 by attaching the boundary disks of the handles to the boundary sphere

∂D3 = S2 [14].

Figure 2.9: handlebody of genus 3 [15]

9



Figure 2.10: handlebody of genus 3 homeomorphic to previous figure

Remark 2.3.1. Two handlebodies are homeomorphic if and only if they have the same

genus g.

Definition 2.3.2. [14] Let two handlebodies H and H ′ of genus g be given. Let

f : ∂H → ∂H ′ be an orientation-reversing homeomorphism. Consider the closed

orientable 3-manifold M obtained by attaching H and H ′ along their boundaries by

the homeomorphism f , i.e. M = H ∪f M ′. This handlebody decomposition of the

closed orientable manifold M is called a Heegaard splitting of M of genus g.

Theorem 2.3.1. Every closed orientable 3-manifold M has a Heegaard splitting.

Proof. [14] Let T be a triangulation of M . Let M1 be the one-skeleton of T and M̂1

be the dual one-skeleton of in a barycentric subdivision. This consists of the vertices

and the edges which do not meet M1. Consider the simplicial neighborhoods N1

and N̂1 of M1 and M̂1 respectively. Then N1 and N̂1 are 3-manifolds with common

boundary and N1 ∪ N̂1 = M . Only things that needs to be shown is that they are

actually handlebodies. Now, since M1 is a graph therefore it has a maximal tree

which contains every vertex. The simplicial neighborhood of that maximal tree is

a 3- ball D3. The simplicial neighborhood of the remaining 1-simplex gives a 1-

handle. After attaching the the 1-handle to the 3-ball, one obtains N1. Therefore,

N1 is a handlebody. Same arguments apply to N̂1 also. Hence, M has a Heegaard

splitting.

Example 2.3.1. Consider two solid tori S1 × D2. Let the homeomorphism between

their boundaries f : S1 × S1 → S1 × S1 be given so that interchanges the copies

of S1. This gives a Heegaard splitting of S3 since S3 = ∂D4 = ∂(D2 × D2) =

(∂D2 ×D2) ∪ (D2 × ∂D2) = (S1 ×D2) ∪ (D2 × S1).

10



2.4 Branched Coverings

This section is based on Chapter 10 of [14].

Definition 2.4.1. Let M and N be two compact manifolds of dimension n and let

A ⊂ M and B ⊂ N be two submanifolds of dimension n − 2. Then a continuous

function f : M → N is called a branched covering with branch sets A (upstairs)

and B (downstairs) if the following conditions are satisfied:

(i) The preimages of open sets of N under f forms a basis for the topology of M

(ii) f(A) = B and f(M \ A) = N \B
(iii) Every point inN \B has a neighborhood U such that each component of f−1(U)

is mapped homeomorphically onto U under f .

Also, the restriction map f : M \ A → N \ B is called the associated unbranched

covering. The branch point a ∈ A is said to have branching index k if f is a degree

k-map around the point a.

Remark 2.4.1. Given a manifold N , the branch set B and a finite branched covering

of N \ B, the total space M can be determined. However, M does not always have

to be a manifold. (Fox,1957)

Example 2.4.1. Let C2 be the complex sphere. Then the map z 7→ zk on C2, which

maps the complex unit disc to itself k-times, is an example of a branched covering

with branched index k at the origin.

2.4.1 Cyclic Branched Covers of S3

In this section we will construct cyclic branched covers, branched over a knot.

Definition 2.4.2. Let K be a knot in S3 and n ≥ 2 be an integer. Then the n- fold

cyclic cover of S3 branched along the knot K is called n-fold cyclic branched cover

of K.

Let us first construct the n-fold cyclic cover of S3 \K:

Let T be the unknotted solid torus in S3 in the Figure 2.11. Then by a homeomor-

phism h : S3 \ int(T )→ S3 \ int(T ) we can give a twist to the interior int(T ) of the
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Figure 2.11: construction of a cyclic branched cover over a knot -1- [14]

torus T (Figure 2.12).

Figure 2.12: construction of a cyclic branched cover over a knot -2- [14]

In order to obtain Figure 2.13, trace the shape of the knot with the twisted torus. With

this process, h(K) becomes homeomorphic to S1 and the torus T has the knot type

of K, where the knot h(µ) lies on T .

The Figure 2.13 lies in an open solid torus. Then the complement of S3\K is obtained

by attaching an open solid torus to that open solid torus where h(µ) lies in. The two

12



Figure 2.13: construction of a cyclic branched cover over a knot -3- [14]

Figure 2.14: construction of a cyclic branched cover over a knot -4- [14]
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solid tori is attached by gluing the meridian curve and the curve h(µ) to each other as

shown in Figure 2.14.

The n- fold cyclic coverXn ofXn = S3−K is given by sewing n solid tori to h(µi)’s

from their meridian curves as in the following Figure 2.15. (for n = 3)

Figure 2.15: n-fold cyclic cover for n = 3[14]

Now, we will see how to construct an n-fold cyclic branched cover: Let N be an open

tubular neighborhood of the knot K. Then consider the n-fold cyclic unbranched

cover of S3 −N . Note that the boundary of N is a torus. Moreover, in the preimage

of the covering map, the meridian on ∂N is wrapped n-times to itself, while the

longitude has n-distinct loops upstairs. (Figure 2.16)

Along the boundaries, attach a solid torus S1×D2 to this unbranched cover such that

a meridian ∗ × S1 matches by the preimage of a meridian of ∂N . This gives a closed

connected manifold M3. Then the covering map M3 → S3 can be expended to a

branched covering by mappingD2×S1 toN with the product map (z 7→ zn/|zn−1|)×
id since N ∼= D2 × S1. Then the knot K will be the branch set downstairs.

Example 2.4.2. The 3-fold cyclic branched covering of S3 branched along the figure

eight knot is given by Figure 2.17.
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Figure 2.16: construction of an n-fold cyclic branched cover [14]

Figure 2.17: 3-fold cyclic branched covering of S3 along the figure-eight knot [14]
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2.5 A Short Review of Surgery Theory

In this section, we will introduce Dehn surgery and how to perform it. The content

will be based on Chapter 9 of [14].

Definition 2.5.1. Let the following information be given:

(i) a 3-manifold M ,

(ii) a link L in the interior of M such that L = L1 ∪ ... ∪ Ln where Li’s are simple

closed curves,

(iii) closed and disjoint tubular neighborhoods Ni’s of Li’s in int(M),

(iv) a simple closed curve Ji on the boundary ∂N of each N .

Then the manifold M̃ can be constructed as

M̃ := (M \ (int(N1) ∪ ... ∪ int(Nn)))
⋃
h

(N1 ∪ ... ∪Nn)

such that h is the union of homeomorphisms hi : ∂Ni → ∂Ni where hi(µi) = Ji for

a meridian curve µi of Ni. The 3-manifold M̃ is said to be constructed by a Dehn

surgery on M along the link L with surgery instructions (iii) and (iv).

2.5.1 Surgery Instructions in S3

[14] Let L be an oriented link. Give the orientation of Li to the longitude λi of

the tubular neighborhood Ni. Also, the linking number of the meridian µi with the

component Li is +1. Then {µi, λi} gives a basis so that the curve Ji is given by

h∗(µi) = [Ji] = aiλi + biµi where bi is the linking number lk(Li, Ji).

Definition 2.5.2. Let ri = bi/ai. Then the ratio ri is called the surgery coefficient

associated to Li. If ai = 0 then ri =∞. A surgery with a rational surgery coefficient

is called rational surgery. In the case of ai = ±1, it is called integral surgery.

A rational number associated to the components of the link L in S3 determines a

surgery and hence a closed oriented 3-manifold.
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Theorem 2.5.1. (Lickorish and Wallace) [15] Let M be a closed orientable 3-

manifold. Then M can be obtained by an integral surgery on S3 along the link

L ⊂ S3.

Lemma 2.5.1. LetH andH
′
be two handlebodies and let h1, h2 : ∂H → ∂H

′
be two

homeomorphisms on the boundary surfaces of the handlebodies. Also let h1 = h2τc

be a twist along a simple closed curve c ⊂ ∂H . Then by performing integral surgery

to the manifold M = H ∪h1 H
′

along a knot K ∈ M ′
, which is isotopic to the curve

c, one can obtain the manifold M
′
= H ∪h2 H

′
.

Proof. [15] Consider the translation of closed curve c on ∂H as it is lying inside the

handlebody. This gives a knot k ⊂ H . Let us denote the tubular neighborhood of the

knot k by N(k) and the annulus connecting the curve c and ∂N(k) by A ∼= S1 × I ,

as in Figure 2.18.

Figure 2.18: on Lemma 2.5.1[15]

Define a homeomorphism ψ : H\N(k)→ H\N(k) which opens the spaceH\N(k)

along A and rotates one of the edges by 360◦ and attach them together. Then ψ|∂H =

τc and ψ|∂N(k) gives a twist along A ∩ N(k). Define φ a homeomorphism from

M
′
2 = (H \N(k)) ∪h2 H

′ to M ′
1 = (H \N(k)) ∪h1 H

′ which is given by

φ(x) =

 ψ(x) if x ∈ H \N(k)

x if x ∈ H ′

Note that ψ|∂H = τc and h1 = h2τc. Therefore, on the boundary points one has

x ∈ ∂H \N(k)∩H ′ φ(x) = x. So, ψ is well defined on the boundary. (Figure 2.19)

Hence, by removing the solid toriN(k) from the manifoldsM1 andM2, the remaining
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Figure 2.19: on Lemma 2.5.1[15]

manifolds become homeomorphic. So, M2 can be obtained from M1 by performing

a surgery along the knot k. If m is the meridian of the boundary torus ∂N(k), then

φ(m) = m± l. Hence, the surgery is an integral surgery.

Proof. (of Theorem 2.5.1) [15] Every manifold M has a Heegaard splitting M =

H ∪h2 H
′ where h2 is an orientation-reversing homeomorphism between the bound-

eries of the handlebodies H and H ′ of genus g. In particular let S3 = H ∪h1 H
′

be the Heegaard splitting of S3. Then h−1
2 h1 : ∂H → ∂H is an orientation pre-

serving homeomorphism. Therefore, h−1
2 h1 can be considered as the composition of

twists along the curves Ci, i.e. h−1
2 h1 = τc1τc2 ...τcn . The Lemma 2.5.1 implies that

performing integral surgery along a knot is the same as applying a Dehn twist with

gluing homeomorphism. Therefore, applying a sequence of twists along knots gives

a sequence of surgeries along knots, and hence a surgery on a link.

Definition 2.5.3. (Lens spaces) Let p ∈ Z+, q ∈ Z \ 0 be relatively prime. Let a Z/p

action on S3 = {(z, w) ∈ C2 | |z|2 + |w|2 = 1} ⊂ C2 is given by

φ(p,q) : S3 → S3 such that φ(p,q)(z, w) = (e2πi/pz, e−2πqi/pw). The oriented 3-

manifold given by the quotient space L(p, q) := S3/(z, w) ∼ φ(p,q)(z, w) is called a

lens space.

Proposition 2.5.1. The fundamental group of a lens space L(p, q) is π1(L(p, q)) =
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Zp.

Proof. The projection map p : S3 → S3/Zp ∼= L(p, q) is a covering map. Note

that S3 is path connected. Therefore by Proposition 1.40 in [6], the group of deck

transformations of this covering map is π1(S3/Zp) = π1(L(p, q)) = Zp.

Example 2.5.1. The lens space L(p, q) can be obtained by p/q-surgery over the triv-

ial knot in S3:

First remove the tubular neighborhood T of the trivial knot from S3. Then since T

is unknotted, S3 \ T is also an unknotted solid torus. Next, sew T back to S3 \ T via

the homeomorphism h : ∂T → ∂T , h(m) = ql + pm where m, l is meridian and

longitude of the torus respectively. Then the meridian curve (0, 1) will be attached to

the torus knot (p, q). Then the manifold obtained from this surgery is the lens space

L(p, q).

2.6 Seifert Manifolds

This section is based on Chapter 1.6 of [15].

Remove the interiors of n disjoint discs from a 2-sphere, i.e. let F := S2 \ (int(D2
1)∪

... ∪ int(D2
n)). Then the manifold F × S1 is a compact orientable 3-manifold with

boundary and ∂(F × S1) = (∂D2
i )× S1, i = 1, ..., n.

Note that the fundamental group of F × S1 is π1(F × S1) =< x1, ..., xn, h | hxi =

xih , x1...xn = 1 >where the generators xi represent the boundary curves of n-discs.

Let n pairs of integers (a1, b1), ..., (an, bn) be given such that ai and bi are relatively

prime and ai ≥ 2 for all n. Then glue a solid torus to ∂(Di)×S1 for all 1 ≤ i ≤ n so

that its meridian is glued to a curve isotopic to ai.xi + bi.h.

For all i, the image curve of {0} × S1 after the gluing process is called the i-th

singular fiber.
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Definition 2.6.1. The resulting closed manifold with this construction is called the

Seifert manifold M((a1, b1), ..., (an, bn)) of genus 0 with n singular fibers [15].

Example 2.6.1. • The lens space L(b, a) is a Seifert manifold M(a, b) with one

singular fiber.

• The lens space L(a1b2 + a2b1, a1a2) is a Seifert manifold M((a1, b1), (a2, b2))

with two singular fibers [15].

Remark 2.6.1. The Figure 2.20 gives a rational surgery description for a Seifert

manifold M((a1, b1), ..., (an, bn)).

Figure 2.20: Surgery description of a Seifert manifold [15]

2.7 Orbifolds

We will give a formal definition of an orbifold in terms of its local structure. Intu-

itively, an orbifold can be seen locally as a manifold which has some locally non-

manifold points.

Definition 2.7.1. An orbifold chart on an n-dimensional topological space X is the

triple (Ũ , G, π) satisfying the followings:

• Ũ is an open subset of Rn

• G is finite diffeomorphism group of Ũ
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• π : Ũ → X is a smooth map which makes the below diagram commute: (Here,

p is the orbit map and π̄ : Ũ → X is a homeomorphism onto an open subset

U ⊂ X .)

Ũ Ũ/G

X

p

π π̄

Moreover, suppose that two orbifold charts (Ũ1, G1, π1) and (Ũ2, G2, π2) on X and a

point x ∈ U1 ∩ U2 = π1(Ũ1) ∩ π2(Ũ2) are given. If there is an open neighborhood

U of x with U ⊂ U1 ∩ U2 and a chart (Ũ , G, π) with U = π(Ũ) which induces an

embedding on each chart (Ũ , G, π) ↪→ (Ũi, Gi, πi), then these orbifold charts are

said to be compatible.

Definition 2.7.2. The set of compatible charts U = {(Ũα, Gα, πα)}α∈I on X is called

an orbifold atlas on X .

Definition 2.7.3. A paracompact, Hausdorff topological spaceXO with a compatible

orbifold atlas U on it is called an orbifold, denoted by O. The topological space XO

is called the underlying topological space of the orbifold O.

The following proposition provides a way to obtain an orbifold from a manifold.

Proposition 2.7.1 ([19]). If the action of a group G on a manifold M is properly

discontinuous, then M/G is an orbifold.

Proof. We will find a cover for M/G by using the manifold structure of M . For each

point x ∈ M , there is a corresponding point x̃ ∈ M/G such that π(x) = x̃, coming

from the projection map π : M → M/G. Let Gx be the isotropy subgroup of x.

Now take a neighborhood of x, say Ux, such that the action of Gx keeps Ux invariant

and Ux ∩ h.Ux = ∅ when h ∈ G \ Gx. This is possible since the action is properly

discontinuous. Then under the map π : M → M/G, we have π(Ux) = Ux/Gx

and this Ux/Gx forms a neighborhood for x̃ in M/G. So, {Ux/Gx} is a cover for

M/G, which is homeomorphic to a quotient of some Euclidean space by the group

action. Now, we need to say that nonempty finite intersections belong to that cover
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also. Consider some finite intersection Ux1/Gx1 ∩Ux2/Gx2 ∩ ...∩Uxk/Gxk 6= ∅. This

means that there are some elements gx1 , gx2 , ..., gxk ∈ G such that gx1 .Ux1 ∩gx2 .Ux2 ∩
... ∩ gxk .Uxk 6= ∅. Then since the action is properly continuous, the isotropy group

can be taken as gx1Gx1g
−1
x1
∩ gx2Gx2g

−1
x2
∩ ... ∩ gxkGxkg

−1
xk

so that the quotient of the

finite intersection by this group belongs to the cover {Ux/Gx}. Hence, M/G is an

orbifold.

Not all but many orbifolds can be obtained by the action of some finite group on a

manifold. In this section, we will consider only the ones obtained by the quotient of

a manifold by a finite group action.

Definition 2.7.4. The set of points on an underlying space of an orbifold which have

nontrivial isotropy subgroup is called the singular locus or the branch set.

It is denoted by Σ(O) = {x ∈ XO | Gx 6= e}

Example 2.7.1. An orientation-preserving Z2 action on a torus is a 2-orbifold, called

a pillowcase.

This action corresponds to π-rotation of the torus through the horizontal axis. Under

this action, each point on torus is mapped to some other point, except the four points

which lie on the axis of rotation. Those fixed points form the singular locus of the

orbifold. Also, one can see that S2 is the underlying topological space of this orbifold.

[3]

Figure 2.21: pillowcase [3]

Definition 2.7.5. The Euler characteristic χ(O) of an orbifold O is given by

χ(O) =
∑
σ∈O

(−1)dim(σ) 1

|Γ(σ)|
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where Γ(σ) is the group assigned to each cell σ of O [3].

Fact 1. Let G be a finite subgroup of SO(3). Then G can be the cyclic group Zn, the

dihedral group D2n, the symmetric group S4 or the alternating groups A4 and A5.

One can see a detailed proof of this fact in Chapter 19 of [2].

2.7.1 Orbifold coverings

Definition 2.7.6. A map f : Õ → O is called an orbifold covering if the projection

map p : XÕ → XO is continuous and if the following conditions are satisfied:

• For every point x ∈ XO, there is a neighborhood U = Ũ/G in XÕ.

• For every component Vi of f−1(U), there is a subgroup Gi of G such that Vi =

Ũ/Gi.

Example 2.7.2. Let M be a manifold and G be a group acting properly discontinu-

ously on M . Then for a subgroup Gi of G, the map M/Gi →M/G gives an orbifold

covering.

Example 2.7.3. The Example 2.7.1 gives an orbifold covering between the torus T 2

and the resulting orbifold under Z2 action, say S2(2, 2). Moreover, this orbifold

covering T 2 → S2(2, 2) is actually a 2-fold covering.

The following proposition is given as an exercise in [3]. Here, we provide a solution

to that exercise and represent it as a proof of the proposition.

Proposition 2.7.2. (i) If the orbifold O has a k-fold orbifold covering Õ → O,

then χ(Õ) = kχ(O).

(ii) If O is a 2-orbifold which has branch points of order mi, then the Euler char-

acteristic of O can be computed by the following equality:

χ(O) = χ(XO)−
∑
i

(1− 1/mi)
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Proof. Part (i): Let f : Õ → O be a k-fold orbifold covering. We know that the

Euler characteristic of O is χ(O) =
∑

(−1)dimσ 1
|Γσ | . Consider the restriction of the

covering to each cell σ. As f is an orbifold covering, for each σ ∈ Ũ/Γσ there is some

Ũ/Γσi where Γσi is a subgroup of Γσ. Now, the restriction map f |σ : Ũ/Γσi → Ũ/Γσ

is also a k-fold cover. This means that |Γσ ||Γσi |
= k. Hence, χ(Õ) =

∑
(−1)dimσ 1

|Γσi |
=∑

(−1)dimσi 1
|Γσ |/k =

∑
(−1)dimσ k

|Γσ | = k.
∑

(−1)dimσ 1
|Γσ | = kχ(O).

Part (ii): Let σj and γk represent a 1-cell and 2-cell of the underlying topological

space of the orbifold. If we see the branch points as 0-cells, then the Euler charac-

teristic of the underlying space becomes χ(XO) =
∑

i 1 −
∑

j σj +
∑

k γk. On the

other hand, the groups associated to 1-cells and 2 cells are trivial as they are not in

the singular locus of O. So by the Definition 2.7.5, the Euler characteristic of O is

χ(XO) = Σi1/mi − Σjσj + Σkγk. Now, by subtracting the second equality from the

first one, we obtain that χ(O) = χ(XO)−
∑

i(1− 1/mi).

Proposition 2.7.3. For every orbifold O there is a universal cover π : Õ → O.

This means that there are base points x ∈ XO \ Σ(O) and x̃ ∈ XÕ \ Σ(O) with

π : (Õ, x̃) → (O, x) so that π(x̃) = x. Moreover, for some other orbifold covering

π
′

: (Õ′ , x̃′) → (O, x) with π
′
(x̃
′
) = x, the map p : Õ → Õ′ is also an orbifold

covering with p(x̃) = x̃
′
.

Õ

Õ′

O

π
p

π
′

One can see a proof of this in Chapter 13 of [19].

2.7.2 Fundamental group of an orbifold

Definition 2.7.7. The fundamental group πorb1 (O) of an orbifold O is defined to be

the deck transformation group of the universal cover Õ of the orbifold O.

Remark 1. For a two dimensional orbifold O, the fundamental group of O can be

found by πorb1 (O) = π1(O \ Σ(O))/G if G is acting properly discontinuously on O.
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Fact 2. The free product with amalgamation of two groups A and B is the quotient

group (A ∗ B)/N where N is the smallest nontrivial normal subgroup of the free

product A ∗B.

Theorem 2.7.1. (Van Kampen Theorem for orbifolds) Let the orbifold O be the

union of two orbifoldsO1 andO2, i.e. O = O1∪O2, such that the intersectionO1∩O2

is path connected. Then the fundamental group ofO is given by the amalgamated free

product of O1 and O2.

πorb1 (O) = πorb1 (O1) ∗πorb1 (O1∩O2) π
orb
1 (O2)

Example 2.7.4. Let O be the n-teardrop orbifold over S2 = D1 ∪ D2 and let O1

and O2 be the corresponding orbifolds over disks D1 and D2. O1 is a cone, and

πorb1 (O1) ∼= Zn and O2 is just a disk, hence simply-connected. Moreover, O1 ∩ O2 is

an annulus, thus the πorb1 (O1∩O2) ∼= Z. The map induced by inclusion ofO1∩O2 in

O1 is surjective. So by the Seifert–Van Kampen theorem we have πorb1 (O) is trivial.

2.7.3 Classification of some two and three dimensional orbifolds

Definition 2.7.8. Let G be a finite group acting on an n- disc Bn by orientation-

preserving homeomorphisms. Then the resulting orbifold Bn/G is called a discal

orbifold. Similarly, if G acts on an n-sphere Sn then Sn/G is called a spherical

orbifold.

The following two theorems are about the classification of spherical 2-orbifolds and

discal 3-orbifolds when the action is orientation-preserving. It is a well-known fact

that a finite group of orientation-preserving homeomorphisms is isomorphic to finite

subgroups of SO(3) [24]. Therefore, the group G in those theorems are immediately

considered to be finite subgroups of SO(3).

Theorem 2.7.2. Let G be a finite subgroup of SO(3). Assume that G acts on the

sphere S2. Also let F (n1, n2, ..., nk) denote the 2-orbifold whose underlying topolog-

ical space is the surface F and ni’s are the order of groups each point in singular

locus. Then for each group G, the 2-orbifold S2/G is one of the following:

• If G = Zn then S2/G = S2(n, n).
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• If G = D2n then S2/G = S2(2, 2, n).

• If G = A4 then S2/G = S2(2, 3, 3).

• If G = S4 then S2/G = S2(2, 3, 4).

• If G = A5 then S2/G = S2(2, 3, 5).

Proof. We will show that the stated orbifolds satisfy the given group actions by using

their orbifold covering and Euler characteristic. We will show only two cases. The

rest can be shown similarly.

• For the first case, the map π : S2 → S2(n, n) is an n-fold orbifold covering. By

using part (i) of the Proposition 2.7.2, one has χ(S2) = nχ(S2(n, n)). Since

χ(S2) = 2, this implies that χ(S2(n, n)) = 2
n

. On the other hand, by the Part

(ii) of Proposition 2.7.2 the Euler characteristic of S2(n, n) can be computed as

χ(S2(n, n)) = χ(S2)− ((1− 1/n) + (1− 1/n)) = 2− 2n−2
n

= 2
n

as desired.

• For the last case, the 2-sphere S2 is a 60-fold cover of the orbifold S2(2, 3, 5)

since |A5| = 60. Again since the underlying space of the orbifold is S2, Propo-

sition 2.7.2 implies that χ(S2(2, 3, 5)) = χ(S2) − ((1 − 1/2) + (1 − 1/3) +

(1−1/5)) = 1/30. Observe that part (i) of the same proposition gives the same

result: χ(S2(2, 3, 5)) = χ(S2)/60 = 1/30.

Theorem 2.7.3. Consider a discal orbifold B3/G where G is a subgroup of SO(3).

Then the branch set of the orbifold is either a graph with one edge with branch order

n or a trivalent graph where the possible branch orders of the edges are (2, 2, n),

(2, 3, 3), (2, 3, 4) and (2, 3, 5) where n ≥ 2.

2.7.4 Handlebody Orbifolds

Before introducing handlebody orbifolds, for further use, let us look at a result given

in [11].

26



Figure 2.22: 3-discal orbifolds [21]

Theorem 2.7.4. (Equivariant Dehn’s Lemma for discs) Let a collection of disjoint

Jordan curves {γ1, ..., γn} which are on the boundary of a 3-manifold M . Assume

that γi is homotopically trivial in M for i = 1, ..., n. If G is a compact group with

a free, orientation-preserving action on ∪ni=1γi, then there are embedded invariant

discs {D1, ..., Dn} which are pairwise disjoint such that ∂Di = γi and their union is

invariant under the action of G [11].

Let G be a finite group with an orientation-preserving action on a handlebody Vg.

Consider a properly embedded 2-disc in Vg such that ∂D = D ∩ ∂Vg is a nontrivial

closed curve on the boundary surface of Vg. The Theorem 2.7.4 implies that for

every x ∈ G we have either x(D) = D or x(D) ∩ D = ∅. Then cut Vg by a set

of disjoint discs G(D), which means removing the interior of a G-invariant regular

neighborhood of G(D). Note that these are indeed a collection of 1-handles, D2 ×
[0, 1]. Hence we get a collection of handlebodies with a G-action on them.

This procedure of cutting along discs gives a collection of disjoint 3-balls with an

action of G. Recall that the finite orientation-preserving group actions on 3-ball are

finite subgroups of the orthogonal group SO(3), see Theorem 2.7.3. The possible

quotient orbifolds are listed in the Figure 2.22. Hence we have the following defini-

tion [23]:

Definition 2.7.9. Let a finite group G act orientation-preservingly on the handlebody

Vg. Then the quotient orbifold H := Vg/G, which are quotients of 3-balls by finite

groups of homeomorphisms and connected by cyclic quotients of 1-handles respecting

the orders of their singular axes is called a handlebody orbifold. [23]

Also, the Figure 3.1 gives an example of how a handlebody orbifold is obtained by

respecting the orders of the singular axes.
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Figure 2.23: obtaining a handlebody orbifold from quotients of 3-balls and a 1-handle

Proposition 2.7.4. The quotients of handlebodies by finite group actions are exactly

the handlebody orbifolds [23].

2.8 Orbifolds in Dunbar’s List

In his paper [4], William Dunbar classifies the geometric 3-orbifolds of the form

M/Γ where M is a simply connected 3-space in Thurston’s eight geometries and

where Γ < Isom(M) acts properly discontinuously.

In his list, the orbifolds with indicated underlying space are represented by their sin-

gular sets. The singular sets are graphs with valency number at each vertex is at most

3. The edges are labeled by their branching order and the edges with no label are

assumed to have branching order 2. The boxes labeled with an integer k represents a

k-half twists of two arcs in it. Also, the boxes labeled by two integers m and n rep-

resents a rational tangle (m,n) of two arcs. Moreover, that tangle has a strut linking

those two arcs to each other and it is labeled by the greatest common divisor of the

integers m and n.

Throughout this section, unless otherwise stated, all 3- orbifolds in Dunbar’s list are

compact, connected orientable orbifolds without boundary.

2.8.1 Seifert Fibered Spherical Orbifolds in Dunbar’s List

Definition 2.8.1. • An orbifoldOn+m is said to be fibered over the base orbifold

Bn with a fiber orbifold Fm if there is a map π : On+m → Bn such that the

inverse image π−1(U) of a neighborhood U in Bn is Rn × Fm/G where G is
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a finite group acting on both Rn and Fm such that π is a projection map on

Rn/G.

• If Fm = S1 then On+1 is said to be a Seifert fibered orbifold [4].

Note that a Seifert fibered orbifold O3 with an empty singular set is a Seifert fibered

manifold.

The orbifolds in Table 1 of Figure 2.24 are fibered over 2-sphere. More specifically,

they are fibered over 2-orbifolds with underlying space S2. Next, we will provide

those fibering 2-orbifolds for the 3-orbifolds in Table 1 of Dunbar’s List.

• Orbifold #01 in Table 1 is fibered over S2(n, n) where f, g ≥ 1 are divisors of

n > 1.

• Orbifold #02 in Table 1 is fibered over S2(2, 2, n) where f ≥ 1 is a divisor of

n > 1 and k 6= 0

• Orbifolds #03, #04, #05, #06 in Table 1 are fibered over S2(2, 3, a) where a =

3, 4, 5.

• Orbifolds #07, #08, #09, #10 in Table 1 are fibered over S2(2, 3, 4).

• Orbifolds #11, #12, #13 in Table 1 are fibered over S2(2, 3, 5).

Similarly, the orbifolds in Table 2 of Figure 2.25 are fibered over 2-disc. We will

provide their fibering orbifolds for the 3-orbifolds in Table 2 of Dunbar’s List.

• Orbifold #14 is fibered over D2(; ), k 6= 0

• Orbifold #15 is fibered over D2(;n, n) where k +m1/n+m2/n 6= 0, k 6= 0

• Orbifold #16 is fibered over D2(n; ), k 6= 0

• Orbifold #17 is fibered over D2(2;n) where k +m/n 6= 0, k 6= 0

• Orbifold #18 is fibered over D2(3; 2) where k +m/2 6= 0, k 6= 0

• Orbifold #19 is fibered over D2(; 2, 2, n) where k+m1/2+m2/2+m3/n 6= 0,

k 6= 0
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Figure 2.24: Table 1: fibered spherical orbifolds fibered over 2-sphere [4],[21]
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Figure 2.25: Table 2: fibered spherical orbifolds fibered over 2-disc [4],[21]
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• Orbifold #20 is fibered over D2(; 2, 3, 3) where k+m1/2 +m2/3 +m3/3 6= 0,

k 6= 0

• Orbifold #21 is fibered over D2(; 2, 3, 4) where k+m1/2 +m2/3 +m3/4 6= 0,

k 6= 0

• Orbifold #22 is fibered over D2(; 2, 3, 5) where k+m1/2 +m2/3 +m3/5 6= 0,

k 6= 0

2.8.2 Non-Fibered Spherical Orbifolds in Dunbar’s List

In Table 3 of Figure 2.26 Dunbar classifies the 3-orbifolds with underlying topological

space S3 which are non-fibered.

He uses an algebraic classification theorem of the finite subgroups of SO(4) to deter-

mine the groups corresponding to a nonfibered spherical orbifold. Then he folds up

the fundamental domains for these group actions on S3 to obtain their corresponding

orbifolds [4].

In [4], the fundamental groups of these nonfibered orbifolds are given. In the next

chapter we will need the orders of the fundamental groups of these orbifolds. For the

sake of completeness, let us explain how these orders are obtained with an example.

Let us choose the orbifold #12 given in Figure 2.26l of Table 3.

From Figure 2.27, the Wirtinger presentation of this orbifold gives its fundamental

group as π1(O) =< x, y, z | x2 = y3 = z2 = (zy)2 = (yxz)2 = (yxzx)2 = 1 > .

First way of finding the group order is using a computer software. When these gener-

ators and their relations are inserted into [GAP], the order of this group is computed

as 120. Alternatively, Dunbar finds the fundamental group of this orbifold in [5] as

π1(O) ∼= J×J∗J. Since there is a 2 : 1 surjection SO(4)→ SO(3)×SO(3), and since

π1(O) is mapped to J ×J∗ J , we conclude that |π1(O)| = 2× 60× 60÷ 60 = 120.
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(a) 1 (b) 2 (c) 3

(d) 4 (e) 5 (f) 6

(g) 7
(h) 8 (i) 9

(j) 10
(k) 11 (l) 12

(m) 13 (n) 14 (o) 15

(p) 16 (q) 17 (r) 18

Figure 2.26: Table 3: nonfibered spherical orbifolds [5],[21]
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Figure 2.27: fundamental group computation for an orbifold in Table 3 [21]
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CHAPTER 3

EXTENDING FINITE GROUP ACTIONS ON SURFACES OVER S3

As we have already mentioned in the introduction, for a fixed genus g it is hard to

determine the maximum order of a finite groups acting on surfaces. So we have a

bound for the order, one can ask what is the maximum order of all finite, cyclic or

abelian groups that can act on surface of genus g? It has been shown that the 4g + 2

is the bound for cyclic [17] and 4(g + 1) is the bound for abelian. [8]. But in this

chapter, we will be interested in which of these actions can be extendable. First let us

recall the Hurwitz theorem.

Theorem 3.0.1. (Hurwitz,1893[7]) Let Σg be a compact surface of genus g ≥ 2. If

G is a finite group acting on Σg, then |G| ≤ 84(g − 1).

Proof. (Sketch of Proof.) Since the order of the group is finite, the quotient of the

action is a compact two-dimensional orbifold O with the underlying space XO =

Σg/G. The quotient map q : Σg → XO is an orbifold covering map of degree

|G|. By the Riemann-Hurwitz formula |G|χ(XO) = χ(Σg) = 2 − 2g. Suppose

the underlying space of the orbifold XO has genus h and N branch points of order

m1,m2, · · · ,mN ≥ 2. By 2.7.2 the Euler characteristic of O is equal to

χ(O) = χ(XO)−
N∑
i

(1− 1

mi

)

So, we need to find the values of h, N and mi’s such that χ(O) is the maximum

number possible.

If h ≥ 2, then χ(O) ≤ −2. If h = 1, there must be at least one branch point of order

mj ≥ 2, which then gives us χ(O) ≤ 2− 2− (1− 1
2
) ≤ −1

2
. Now, suppose χ(XO)
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has genus h = 0. If N ≥ 5, then χ(O) ≤ 2−
5∑
i

(1− 1

mi

) ≤ 2−
5∑
i

(1− 1

2
) ≤ −1

2
.

If N = 4, then if all mj = 2 then χ(O) = 0, which can hold only if g = 1. So the

highest possible χ(O) can happen if mj = 2 for 3 branch points and for one of them

we have mj = 3 then χ(O) = 2− 1
2
− 1

2
− 1

2
− (1− 1

3
) = −1

6
. If N = 4, then again

by considering all possible cases on the orders of m1,m2,m3 we find that the highest

possible χ(O) = 2 − 1
2
− (1 − 1

3
) − (1 − 1

7
) = − 1

42
. If N ≤ 2, then χ(O) ≥ 1.

Therefore, χ(O) ≤ − 1
42

for g ≥ 2 and |G|(− 1
42

) ≥ 2− 2g and so |G| ≤ 84(g − 1).

Definition 3.0.1. Let G be a finite group acting on a genus g surface Σg and let Σg

be embedded in S3 through e : Σg ↪→ S3. If G acts also on S3 so that the restriction

of that action to Σg is exactly the action of G on Σg, then the action on the surface Σg

is called extendable (through the embedding e over S3), i.e. S3/G|Σg = Σg/G [20].

Definition 3.0.2. Let the action ofG be extendable over S3. An embedding e0 : Σg ↪→
S3 is called an unknotted embedding if S3 \ Σg is a union of two handlebodies.

This means that S3 has a Heegaard splitting, S3 = H1∪ΣgH2 where two handlebodies

H1, H2 are glued along the surface Σg and Hi’s are invariant under the action of G.

3.1 Maximum order of groups with extendable actions

Theorem 3.1.1. Assume that the action of G on the surface Σg can be extended to

S3 through some unknotted embedding e0 : Σg ↪→ S3 and also assume that |G| =

12(g − 1). Then the genus g is one of the following:

g ∈ {2, 3, 4, 5, 6, 9, 11, 17, 25, 97, 121, 241, 601} [20].

Proof. Let H1, H2 be the Heegaard splitting of S3 under the unknotted embedding

e0 such that the action of G on the handlebodies H1 & H2 is invariant. Consider

the handlebody orbifolds Hi/G. Since a handlebody orbifold is obtained by attach-

ing 3-discal orbifolds along 2-discal orbifolds [21], the 3-ball B3 is the underlying
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Figure 3.1: singular set of the orbifolds Hi/G [21]

Figure 3.2: singular set of the orbifold S3/G [21]

space of Hi/G. Moreover, the singular sets of 3-discal orbifolds are classified in

Theorem 2.7.3, therefore the singular sets of the handlebody orbifolds are as in the

Figure 3.1. Hence, the singular set of the quotient orbifold is as in Figure 3.2, i.e the

singular set of the handlebodies are connected to each other according to the branch-

ing orders of the strands. The ones with order 3 must be connected to each other

to form the singular set of the quotient orbifold. The remaining three strands with

branching order 2 can be connected to each other in the shape of a braid on 3 strings,

say σ. The quotient orbifold with the resulting singular set is called O(σ; p, q) where

p, q = 2, 3, 4, 5.

The underlying topological space of the quotient orbifold S3/G is again S3. There-

fore, we look for the orbifolds O(σ; p, q) which are spherical. In Dunbar’s list [4], all

the spherical 3-orbifolds are classified. The orbifolds O(σ; p, q) can be divided into

two groups; if both p and q are equal to 2 or not. Let us first consider the case where

not both p and q are equal to 2.

Case 1 : There must be a non-dihedral singular point (i.e. not of the form (2, 2, n))
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in the singular set of the orbifold. So the singularity can be either tetrahedral, octa-

hedral or icosahedral, i.e. A4, S4 or A5. Since the orbifold has underlying space S2

as it can be seen in Figure 3.1, we are looking for the non-fibered spherical orbifolds

which contains the singularities (2, 2, 2, 3). Furthermore, in the singular set of the

nonfibered spherical orbifold, the edges with singularities (2, 2) and (2, 3) intersect

at a vertex and those vertices should be connected to each other with another edge.

In Dunbar’s List of nonfibered spherical orbifolds (see 2.8.2), the singularities of the

Figures 2.26h, 2.26i, 2.26m, 2.26n, 2.26o, 2.26q, 2.26r are not of the type (2, 2, 2, 3).

Even though the Figure 2.26a has the singularity type (2, 2, 2, 3), there is no edge con-

necting the vertices with adjacent singularity type (2, 2) and (2, 3). We also observe

that the Figure 2.26c does not have any vertices with adjacent edges of singularity

type (2, 2) and (2, 3). Hence, there are only 9 possible graphs left. (See Figure 3.3)

Figure 3.3: nonfibered spherical orbifolds with a singularity type (2, 2, 2, 3) [20]

In [5], Dunbar gives the fundamental group of each of these orbifolds. Note that O

is the orientation-preserving symmetry group of octahedron and J is the orientation-

preserving symmetry group of icosahedron. So the group G acting on S3 giving

the resulting orbifold is the fundamental group of the orbifold. So, |G| can be 24,

48, 120, 60, 192, 7200, 1152, 2880. Since the relationship between the genus and

the group order is |G| = 12(g − 1), the genus g can be 3, 5, 13, 6, 17, 601, 97, 241.
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Case 2 : In this case both p and q are equal to 2, i.e. the orbifold is O(σ; 2, 2).

This quotient orbifold can be obtained in the following way: Consider a two-bridge

link L(σ) in S3 and assign the singular index 3 to each components of that link.

This represents the singular set of an orbifold, call L3(σ). In Theorem 1 of [10],

it is shown that the orbifold L3(σ) is a Z2 × Z2 covering of the quotient orbifold

O(σ; 2, 2). Therefore, if O(σ; 2, 2) is a spherical orbifold, then so is the orbifold

L3(σ) whose singular set is a two-bridge link. Among all the spherical orbifolds in

Section 2.8 ([4]), only the Table 1 of Figure 2.24 consists of the spherical orbifolds

with the singular set as a two-bridge link. Those links which have branching index 3

on each of their components are given in Figure 3.4

[20]

Figure 3.4: spherical orbifolds with a two-bridge link singular set [20]

Consider the 3-fold cyclic branched covering ofL3(σ) with no singular set, say L̃3(σ).

Then the corresponding orbifold covering map is given by

L̃3(σ)→ L3(σ)→ O(σ; 2, 2).

Since L3(σ)/(Z2×Z2) = O(σ; 2, 2) and L̃3(σ)→ L3(σ) is a 3-fold cover, the degree

of the orbifold covering map is 12. The resulting manifolds L̃3(σ) are Seifert fiber

spaces:

• The first manifold, being the 3-fold cyclic branched covering of S3 over unknot,

is S3. Note that π1(S3) = 1.

• The 3-fold cyclic branched covering of S3 over the Hopf link is the Lens space

L(3, 1) with π1(L(3, 1)) = Z3.
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• The 3-fold cyclic branched covering of S3 over the trefoil is given as the quar-

ternion manifold Q3 where its fundamental group is given as π1(Q3) =<

a, b | a2 = b2 = (ab)2 > (see p.304-305 of [14])

• The manifold obtained by taking the cyclic branched cover over the fourth link

has fundamental group π1 =< x, u | x3 = u2 = (ux)2 > which has order 24.

[14]

• The last singular set is a torus knot of type (2, 5). (see Figure 2.5) By Theorem

1 in p. 309 of [14], the 3-fold cyclic branched cover of S3 over the torus knot

of type (2, 5) is the Poincaré homology 3-sphere, denoted by P3. Also the

fundamental group of P3 is the binary icosahedral group of order 120.

So, the order of the fundamental groups of L̃3(σ) are 1, 3, 8, 24, 120. Since the degree

of the orbifold covering is 12, the order of the groups |G| corresponding to the orb-

ifoldsO(σ; 2, 2) are 12, 36, 96, 288, 1440. From, |G| = 12(g−1), the possible genera

g for an extendable unknotted action are 2, 4, 9, 25, 121 [20].

Lemma 3.1.1. [20] Suppose a group G is acting on the pair (F,M) where F is a

surface embedded in a 3-manifold M with the embedding i : F ↪→M . Then we have

the following diagrams:

F M

F/G M/G

p

i

p

î

π1(F ) π1(M)

π1(F/G) π1(M/G)

p∗

i∗

p∗

î∗

Assume the orbifold F/G is connected. Then F is connected if and only if

î∗(π1(F/G)).p∗(π1(M)) = π1(M/G).

Proof. (⇐) Let î∗(π1(F/G)).p∗(π1(M)) = π1(M/G) hold and assume that F is not

connected. Then F has a connected component F1 such that F1 $ F . Let G1 < G
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be the stabilizer of F1, G1 = {h ∈ G | h(F1) = F1}. Then F1/G1 = F/G. Observe

that |π1(M/G) : p∗(π1(M))| = |G| since p : M →M/G is a universal cover with G

as its deck transformation group. Then

|G| = |π1(M/G) : p∗(π1(M))| = |(̂i∗(π1(F/G)).p∗(π1(M))) : p∗(π1(M))|

by assumption, which is equal to |̂i∗(π1(F/G))/(̂i∗(π1(F/G)) ∩ p∗(π1(M)))| by the

Second Isomorphism Theorem. Since î∗(π1(F/G) ∩ p∗(π1(M)) is a subgroup of

i∗p∗(π1(F1)),

|̂i∗(π1(F/G))/(̂i∗(π1(F/G)) ∩ p∗(π1(M)))| ≤ |̂i∗(π1(F/G)) : î∗p∗(π1(F1))|

Since î∗p∗(π1(F1)) = p∗(π1(F1)).ker(̂i∗),

|̂i∗(π1(F/G)) : î∗p∗(π1(F1))| = |π1(F/G)/ker(̂i∗) : p∗(π1(F1)).ker(̂i∗)/ker(̂i∗)|

= |π1(F1/G1) : p∗(π1(F1)).ker(̂i∗)| ; F1/G1 = F/G

≤ |π1(F1/G1) : p∗(π1(F1))| ; î∗is an inclusion

= |G1| < |G| ; a contradiction.

⇒ Assume that î∗(π1(F/G)).p∗(π1(M)) $ π1(M/G). Then for the orbifold M/G,

we can find an orbifold covering space M̂ which corresponds to

î∗(π1(F/G)).p∗(π1(M)).

F M

M̂

F/G M/G

p

i

p
p̂

î

By the General Lifting Lemma, F/G lifts to M̂ since î∗(π1(F/G)) ⊂ p̂∗(π1(M̂)).

Also, M̂ is a union of disjoint copies, therefore F must be disconnected. This is a

contradiction, so we have that î∗(π1(F/G)).p∗(π1(M)) = π1(M/G) [21].
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3.2 Maximum orders of abelian and cyclic groups with extendable actions

Assume that the G-action on the surface Σg is extendable to S3 through some embed-

ding of Σg in S3. Let us define the set

Γ = {x ∈ S3 | ∃g ∈ G \ {id} such that gx = x}. Note that Γ is a graph that might

be disconnected. Also, by Proposition 2.7.1 S3/G gives a 3-orbifold with branch set

Γ/G, which is also a graph. Then edges of Γ/G are assigned a positive integer, which

is the branch index of the corresponding edge.

Now, suppose that there is a G-action on a handlebody Vg of genus g. The orbit

space of this action gives a handlebody orbifold Vg/G. For this handlebody orbifold,

a corresponding finite graph of groups (Γ,G) is determined in the following way:

Γ is a graph where G assigns a finite group Gv to each vertex of Γ such that Gv ≤
SO(3) and assigns a finite group Ge to each edge of Γ such that Ge ≤ SO(2). Also if

a vertex v is connected to an edge e then there is a monomorphism Ge ↪→ Gv. Being

associated to Vg/G, there is a map φ : π1(Γ,G) → G which is a surjection where its

kernel is a free group of rank g. Furthermore, φ is injective on each vertex group Gv.

The fundamental group π1(Γ,G) is obtained by the free product with amalgamation

and HNN-extension of the vertex groups of (Γ,G) over its edge groups [20].

Note that cyclic, dihedral, tetrahedral, octahedral and icosahedral groups are the only

finite subgroups of the orthogonal group SO(3), which correspond to the orbifolds in

Theorem 2.7.3. Then the vertex groups Gv are among these five groups. Moreover,

since the edge groups Ge are finite subgroups of SO(2) and since they are proper

subgroups of their adjacent vertex groups, the edge groups are either trivial group or a

cyclic group which is maximal in their adjacent vertex groups. Conversely, if a graph

of groups is given corresponding to a handlebody orbifold together with a surjection

φ : π1(Γ,G) → G, then corresponding to this surjection, there is a G-action on a

handlebody Vg of genus g.

Proposition 3.2.1. The fundamental group of Γ(A,C,B) is

π1(Γ(A,C,B)) = A ∗C B

Definition 3.2.1. Let χ(Γ,G) denote the Euler characteristic of the graph of groups

(Γ,G). Then it is given by χ(Γ,G) :=
∑

1/|Gv|−
∑

1/|Ge| where Gv, Ge are vertex
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and edge groups respectively.

Proposition 3.2.2. Let a finite group G act on a genus g ≥ 2 handlebody. Then if

χ = χ(Γ,G) is the Euler characteristic of finite graph of groups of the corresponding

handlebody orbifold, then g − 1 = |G|(−χ)

One can find a proof of Proposition 3.2.2 in [23].

Definition 3.2.2. Let G act on the handlebody Vg. Then any two actions of G is

said to be equivalent if the homeomorphism groups of Vg on those actions of G are

conjugate.

Theorem 3.2.1. [20] Assume that a finite abelian group G acts on a handlebody Vg

where g ≥ 2. Then the maximum order of G is given by 2g + 2 if g 6= 5 and 16 if

g = 5. Also, for g 6= 3, 5 those groups G with maximum orders are isomorphic to

Z2 × Zg+1, while for g = 3, 5, G ∼= (Z2)3, (Z2)4 respectively.

(i) There is only one equivalence class for every group of the form Z2 × Zg+1 and

also for (Z2)4. however, for the group (Z2)3, which acts on the handlebody V3

has three equivalence classes.

(ii) The group (Z2)4 is the only abelian group acting on V5 with order greater than

12.

Proof. By Proposition 3.2.2, as g ≥ 2, χ < 0. Consider the graph of groups (Γ,G).

Then its vertex groups Gv are the subgroups of SO(3), which are precisely the cyclic

group Zn, the dihedral group D2n, the tetrahedral group A4, the octahedral group S4

and the icosahedral group A5. Therefore Gv is either Zn or Z2 × Z2
∼= D4 since

they are the only abelian subgroups of SO(3). Also since the edge groups are finite

subgroups of SO(2), they are cyclic and moreover, they are proper in each adjacent

vertex group because there is a monomorphism Ge ↪→ Gv between each adjacent

edge and vertex groups. If an edge e is not a loop then the corresponding group Ge

can be either trivial group or Z2. In the case where Ge = Z2, each adjacent vertex

group must be Z2×Z2 Now, consider the abelian groups with |G| ≥ 2g−1. Then one

has −χ = g−1
|G| ≤

g−1
2g−1

< 1/2. Therefore, we will consider the possible graphs (Γ,G)
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(and the corresponding group G) under the assumption that −χ < 1/2. We will

examine two different possibilities regarding the vertices with vertex group Z2 × Z2:

Either some of the vertex groups of the graph (Γ,G) are Z2×Z2 or none of the vertex

groups are Z2 × Z2.

Case 1: Assume that none of the vertex group of (Γ,G) is Z2 ×Z2. This means for

every vertex v, Gv = Z2. Also define the set E = {e ∈ Γ | Ge 6= 1}. As none of the

vertex groups can be Z2 × Z2, the set E contains only the edges which are actually

loops. Denote the corresponding graph having no loops with Γ0 = Γ \ E, and the

usual graph having no edge and vertex group with |Γ0|. Note that χ(Γ) = χ(Γ0) −∑
e∈E 1/Ge, which implies χ(Γ) ≤ χ(Γ0). Also by using the definition of χ(Γ0,G)

and χ(|Γ0|) = # of vertices − # of edges, one can see that χ(Γ0) ≤ χ(|Γ0|). In

short, the following inequality holds: −1/2 < χ(Γ) ≤ χ(Γ0) ≤ χ(|Γ0|). Moreover,

observe that the Euler characteristic of the graph |Γ0| can be either 0 or 1. This is

because while attaching an edge, either a new vertex is introduced to the graph or it

is attached to two vertices which are present in the graph and forms a cycle.

Let k be the number of nontrivial vertices in the graph |Γ0|. Then

χ(Γ0) =
∑

trivial edges

1

|Gv|
+

∑
nontrivial edges

1

|Gv|
−
∑ 1

|Ge|

≤
∑

trivial edges

1

|Gv|
−
∑ 1

|Ge|
+
k

2
≤ χ(|Γ0|),

or equivalently χ(Γ0) ≤ χ(|Γ0|)− k/2.

Now, if χ(|Γ0|) = 0 then χ(Γ) /∈ (−1/2, 0), which is a contradiction. Therefore, the

second possibility applies: χ(|Γ0|) = 1 and |Γ0| is a tree. Consider the degree one

vertices of the graph, which are precisely the ends of the graph. The vertex groups of

those ends cannot be trivial, because if they were, there wouldn’t be an edge attached

to that vertex, so it would be isolated. Therefore, each end of |Γ0| is nontrivial.

Thus the graph Γ is only a ray, consisting of one edge and two vertices with the

corresponding groups 1,Zn1 ,Zn2 respectively. Denote it as Γ(Zn1 , 1,Zn2). Moreover,

because the order of the vertex groups are actually the orders of the branch set of the

orbifold, the tuple (n1, n2) can be only the followings: {(2, n), (3, 3), (3, 4), (3, 5)},
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where n = 3, 4 or 5. Hence, one can conclude that the graph Γ has no loops at all, i.e.

Γ = Γ0. This is because a loop occurs only if (n1, n2) = (2, 4) so that the edge group

is nontrivial. However, in that case the vertex group is Z2×Z2, but it is assumed that

none of the vertex groups are Z2 × Z2.

In short, Γ is either Γ(Z2, 1,Zn) with χ = n−2
2n

(n ≤ 5) or Γ(Z3, 1,Zn) where n =

3, 4, 5 with −χ = 1/3, 5/12, 7/15.

Note that the fundamental group of Γ(Z2, 1,Zn) is π1(Γ(Z2, 1,Zn)) ∼= Z2 ∗ Zn.

Also, Z2 × Zn and Zn, (n is even) are the only finite abelian groups surjecting to the

free product π1(Γ(Z2, 1,Zn)) ∼= Z2∗Zn such that the kernel is torsion-free. In the first

possibility, where Γ is Γ(Z2, 1,Zn), g = n− 1 and |G| = 2n = 2(g + 1). Therefore,

G ∼= Z2 × Zg+1. Now, for the other cases, i.e. Γ is Γ(Z3, 1,Zn) for n = 3, 4, 5 the

possible group G are Z3, (Z3)2, Z12 and Z15, where |G| < 2(g + 1) in each case.

Case 2: Assume that some of the vertex groups Gv in the graph (Γ,G) are Z2×Z2.

Similar to the first case, let us define the set

E = {e ∈ Γ| adjacent vertex groups are cyclic and Ge 6= 1}. Note that every

nontrivial edge with cyclic adjacent vertices has to be a loop. This is because the edge

group is a subgroup of each cyclic vertex group, which are Zn’s with n = 2, 3, 5. This

is a contradiction since in that case the edge group becomes trivial, therefore there is

only one vertex group, i.e, the edge is actually a loop.

So, by letting Γ0 = Γ \ E we guarantee that every edge with a nontrivial group has

two vertices with Gv = Z2 × Z2. Moreover, the inequality in the previous case still

holds: −1/2 < χ(Γ) ≤ χ(Γ0) ≤ χ(|Γ0|).

Let us look at the last inequality χ(Γ0) ≤ χ(|Γ0|), because the proof of the rest of the

inequality is the duplicate of the one in the first case. Let l be the number of vertices

in the graph Γ0 with the vertex groups Z2 × Z2. Then since there are at most three

edges coming out of a vertex and since any two vertices together define at most one

edge, the number of nontrivial edge groups is less than 3l
2

.

Now, χ(Γ0) has l vertices of order 4 and at most 3l
2

edges of order 2. We will use the

definition of the Euler characteristic of a usual graph and the definition of χ(Γ0).
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As |Γ0| is a usual graph, either χ(|Γ0|) = 0 or χ(|Γ0|) = 1.

Note that a cyclic end χ(Γ0) is less than χ(|Γ0|) by at least 1/2 since a cyclic end

decreases the Euler characteristic of the graph of group by at least 1 − 1
n

= n−1
n

,

which is ≤ 1/2 if n ≥ 2.

Since there are l vertices of type Z2 × Z2, there are at most 3l−2
2

nontrivial edges.

Then χ(Γ0) ≤ χ(|Γ0|)− 3l
4

+ 1
2

3l−2
2

= χ(|Γ0|)− 1
2
. Therefore, the graph χ(|Γ0|) can

have at most 2 ends.

• If χ(|Γ0|) = 0, then number of vertices is equal to the number of edges. There-

fore, Γ0 is a loop containing some Z2 × Z2 vertices. So, the graph of groups

with only one vertex and one edge is the possibility for (Γ,G) with χ = −1/4.

However, the Z2 subgroups of the vertex group Z2 × Z2 are conjugate to each

other by the HNN generator of π1(Γ,G) of the loop [16]. Therefore, π1(Γ,G)

does not surject onto an abelian group. Hence, this case is not possible.

• If χ(|Γ0|) = 1, then Γ0 is a segment, with possibly inner vertices with Z2×Z2.

For every inner vertex, there are at most 3l−1
2

edges with a nontrivial group, thus

χ(Γ0) ≤ χ(|Γ0|) − 3l
4

+ 1
2

3l−1
2

= χ(|Γ0|) − 1
4
. Therefore, the number of inner

vertices is at most one.

If the segment has no inner vertex, then (Γ,G) is either Γ(Z2 × Z2, 1,Z2) with

−χ = 1/4 or Γ(Z2×Z2, 1,Z3) with−χ = 5/12. In the first case of (Γ,G), the

possible groups G are Z2×Z2 or (Z2)3. In the second case, G is Z2×Z6. Note

that the upper bound |G| = 2g + 2 is achieved only for the group (Z2)3 where

g = 3.

If there is an inner vertex, the graph of groups is Γ((Z2)2,Z2, (Z2)2,Z2, (Z2)2)

with −χ = 1/4. Also there is a surjection from its fundamental group onto

(Z2)n where n = 2, 3, 4. Therefore, the order of the group (Z2)4 is maximum

with 16 = 2(g + 1) for g = 5 as in the theorem. Also, the order of (Z2)3 is

maximum with 8 = 2(g + 1) for g = 3 again as in the previous case.

Finally, there is one equivalence class for the group Z2×Zg+1 since there is only one

finite bijection from Γ((Z2)2,Z2, (Z2)2,Z2, (Z2)2) to an abelian group.
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The possible finite bijections from Γ((Z2)2,Z2, (Z2)2,Z2, (Z2)2) to (Z2)3 are given

by either all three vertices are mapped to different subgroups of (Z2)3 and given by

two vertices are mapped to the same subgroup of (Z2)3.Also, there is one finite bijec-

tion from Γ(Z2 × Z2, 1,Z2) to (Z2)3. Therefore, in total there are three equivalence

classes for (Z2)3 acting on V3. This proves (i).

Note that the abelian groups of order 13, 14, 15 are cyclic groups. We also know that

each of the graph of groups represent the singular set of the corresponding orbifold.

There is no finite injective surjection to these cyclic groups for g = 5.

For a cyclic group G, the previous theorem implies the following:

Theorem 3.2.2. [20] Assume that G is a finite cyclic group which acts on a han-

dlebody with genus g ≥ 2. If |G| ≥ 2g − 2 the G is listed in one of the following

groups:

(i) Z2g+2 if g is even with a corresponding surjection Z2 ∗ Zg+1 → Z2g+2

(ii) Z2g, for every g, with a corresponding surjection Z2 ∗ Z2g → Z2g and when

g = 6, with the surjection Z3 ∗ Z4 → Z12

(iii) Z2g−1 for g = 2 and g = 8 with surjections Z3 ∗ Z3 → Z3 and Z3 ∗ Z5 → Z15

(iv) Z2g−2 for every g, with the graph of groups Γ(Z2, 1,Zn) with an extra loop

attached to a vertex of type Zn, where the edge group is Zn, n|2g−2; moreover,

for g = 2 and g = 3 the actions are associated to the surjections Z2∗Z2∗Z2 →
Z2 and Z4 ∗ Z4 → Z4 respectively.

Proof. The proof of Theorem 3.2.1 also proves the cases where |G| ≥ 2g − 1. It is

enough to consider the case |G| = 2g−2. Since g−1 = |G|(−χ), the Euler character-

istic of the possible graphs of groups is −χ = 1/2. Assume that Γ0 has at least three

nontrivial vertices and g = 2. Then the fundemental group of Γ(Z2, 1,Z2, 1,Z2) is

π1(Γ(Z2, 1,Z2, 1,Z2)) = Z2∗Z2∗Z2. There is a surjection from Z2∗Z2∗Z2 toGwith

torsion free kernel. Therefore, the associated surjection is Z2∗Z2∗Z2 → Z2. If g = 3,

then Γ0 can be a ray with two vertices, in particular Γ(Z4, 1,Z4) with the surjection

47



Z4 ∗ Z4 → Z4. Finally, Γ can also be the graph obtained by attaching a loop with Zn
group to the Zn vertex of Γ(Z2, 1,Zn). Then χ = 1/2 + 1/n − 1 − 1/n = −1/2,

which gives |G| = 2g − 2 [20].

Theorem 3.2.3. Let AEg be the maximum order of all finite abelian groups G with

an extendable action on Σg to S3. Then AEg = 2g + 2.

Proof. Assume that the action of an abelian group G on the surface Σg is extendable

to S3 with some embedding e : Σg ↪→ S3. The second theorem of [13] proves that an

abelian G-action on the surface of Σg extends to a compact 3-manifold M such that

∂M = Σg if and only if it extends to a handlebody Vg such that ∂Vg = Σg. Therefore,

AEg ≤ AHg where AHg is the maximum order of all finite abelian groups G acting

on the handlebody Vg. It is known that if there is a finite orientation preserving group

action on S3 then it is indeed a subgroup of SO(4) by a conjugation. However, (Z2)4

is not isomorphic to any subgroup of SO(4). This means that the action of (Z2)4 on

the surface Σ5 cannot be extended to S3. Then the Theorem 3.2.1 implies that for all

g ≥ 2, AEg ≤ 2g + 2. Also by Example 4.0.1, the abelian group action Zm × Zn
on the surface Σg is extendable on S3 with an unknotted embedding e0 : Σg ↪→ S3.

This implies that AEo
g ≥ 2g + 2 where AEo

g is the maximum order of a finite abelian

group which acts on Σg extendably to S3 with some unknotted embedding. Therefore

we have AEo
g ≥ 2g + 2, which implies: 2g + 2 ≤ AEo

g ≤ AEg ≤ 2g + 2. Hence

AEo
g = AEg = 2g + 2 is proved [20].

Theorem 3.2.4. Let CEg be the maximum order of all finite cyclic groups G with an

extendable action on Σg to S3. Then CEg =

2g + 2 if g is even

2g − 2 if g is odd

Proof. Note that in Example 4.0.1 an action of Z2 × Zg+1 on the surface Σg is con-

structed which extends to S3 if g > 1 is even. Also Example 4.0.2 gives a Z2g−2

action on Σg extending to S3 if g > 1 is odd. Therefore, CEg ≥ 2g + 2 for even

g > 1 and CEg ≥ 2g − 2 for odd g > 1.
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Now, assume that the action of G on Σg is extendable. The second theorem of [13]

implies that theG-action on Σg extends to (Vg, ∂Vg = Σg). By Theorem 3.2.2 part (i),

for every even g, AHg = 2g+2 whereAHg is the maximum order of all finite abelian

groups acting on the handlebody Vg. The parts (ii) and (iii) of the same theorem

implies that for every odd g, a cyclic group G acting on Vg with |G| > 2g − 2 is Z2g

with an associated surjection Z2 ∗ Z2g → Z2g.

Claim: The action of Z2g on ∂Vg = Σg which extends to Vg is not extendable.

Note that the claim implies CHg ≤ 2g+ 2 for even g > 1 and CHg ≤ 2g− 2 for odd

g > 1.

Proof of the Claim: Consider the action of Z2g on Vg. The handlebody orbifold X =

Vg/Z2g consists of two 3-balls with an arc as their singular sets having indices 2 and

2g, connected by a 1-handle as in Figure 3.5.

Figure 3.5: the handlebody orbifold Vg/Z2g [20]

The preimage of the 3- ball with a singular arc of index 2g under the map Vg →
Vg/Z2g is a 3-ball B3 in Vg. The action of Z2g on that 3-ball is a π

g
-rotation. The

preimage of the remaining part of X in Vg is B3 where g 1-handles are attached to

opposite Z2g-equivariant discs on B3.

Figure 3.6: preimage of X in V3 [20]

The Figure 3.6 shows the case for g = 3.
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Therefore, the Z2g action on the surface Σg = ∂Vg = S2
∗ ∪ {N1, ..., Ng} is obtained

from a punctured 2-sphere S2
∗ by 2g punctures where g tubesN1, ..., Ng along g-many

opposite puncture pairs. We will know prove that the given Z2g action on Σg is not

extendable.

Let γ be an arc on ∂X as in the Figure 3.7. The preimage of γ under the orbit map

of X contains g arcs γi, i = 1, ..., g on ∂Vg = Σg, which are equivariant under the

G-action. Let us denote the upper hemisphere of S2
∗ with 2g punctures by D. Then

the boundaries of the arcs γi divide the boundary ofD into 2g arcs, denoted by αi and

βi such that αi is mapped to βi under the action of π
g
-rotation. (Figure 3.8)

Figure 3.7: the arc γ on ∂X [20]

Figure 3.8: αi and βi on D [20]

Now, let K1 = γi ∪ αi and K2 = γi ∪ βi. Since the surface Σg is embedded into S3,

K1 and K2 are knots in S3 as in the Figure 3.9

Figure 3.9: the knots K1 and K2 in S3 [20]
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Assume that the action of G extends to S3. Also, let σ ∈ G be the generator of the

group G so that σ|D is π
g
-rotation. Then σ(K1) = K2. The fixed point set of σ is

nonempty, σ(x) = x for some x ∈ D. Let K0 be the circle component of the fixed

point set of σ, passing through x. Then, σ{K0, K1} = {K0, K2}.

Let lk2(K0, K1) and lk2(K0, K2) be the mod2 linking numbers of K0, K1 and K0,

K2. Let S2 be a sphere with a standard embedding into S3, which also contains the

disc D. Consider the projections of the knots Ki and K0 onto this 2-sphere. We will

compute the linking numbers lk2(K0, Ki) from these projected diagrams. For every

crossing, if the arc ofK0 goes over the arc ofKi, then the contribution of this crossing

to the linking number lk2(K0, Ki) is 1. On the other hand, if the arc of K0 goes under

the arc of Ki, then the contribution of this crossing to the linking number lk2(K0, Ki)

is 0.

Note that lk2(K0, K1) and lk2(K0, K1) differs from each other only at the crossings

of K0 with the boundary of D. There are only three possible cases: (Figure 3.10)

Figure 3.10: three different positions of K0 and D [20]

Case 1: Both ends of the arc of K0 in the disc can go over ∂D. There are two

possibilities. The two ends of the arc can go over both αi and βi. In that case, the

contribution of the crossing to the linking numbers lk2(K0, K1) and lk2(K0, K2) is 0.

Also, one of the ends of the arc can go over αi and the other one can go over βi then

the crossing contributes 1 to the linking numbers lk2(K0, K1) and lk2(K0, K2).

Case 2: Both ends of the arc of K0 in the disc can go under ∂D. In that case, the

crossing contributes 0 to the both linking numbers lk2(K0, K1) and lk2(K0, K2).

Case 3: One end of the arc in the disc can go over ∂D while the other end goes

under ∂D. Then, the arc of K0 has nonempty intersection with the interior of D,

which is the unique fixed point x ∈ D. This corresponds to a unique arc. If the top
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end of the arc goes over αi then it contributes 1 to lk2(K0, K1) while it contributes

0 to lk2(K0, K2). On the other hand, if the top end of the arc goes over βi then it

contributes 0 to lk2(K0, K1) while it contributes 1 to lk2(K0, K2). In any case, the

contribution cannot be the same for both linking numbers.

So, lk2(K0, K1) 6= lk2(K0, K2). This is a contradiction since σ : S3 → S3 is an

automorphism which maps {K0, K1} to {K0, K2}. Hence the action of G on the

surface Σg does not extend to S3 for |G| = 2g.
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CHAPTER 4

SOME EXAMPLES OF ACTIONS EXTENDING TO S3

Example 4.0.1. We will give a Zm × Zn- action on S3 by seeing the 3-sphere as a

unit sphere lying inside the complex plane C2:

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

Consider the points aj, bk on S3 given by aj = (e
2πji
m , 0) for j = 0, 1, ...,m and

bk = (0, e
2πki
n ) for k = 0, 1, ..., n. Then a Zm × Zn action on S3 can be generated

by the maps x : (z1, z2) 7→ (e
2πi
m z1, z2) and y : (z1, z2) 7→ (z1, e

2πi
n z2). Observe that

this is an orientation-preserving action as the maps x and y generating the action

represent a rotation in the first and second components. Also, it is a faithful action

since there is no nonidentity group element fixing each point (z1, z2) in S3.

Moreover, note that this action generated by x and y sends each aj to some aj again

(each bk to some bk respectively), therefore the set {aj, bk} is invariant under the

Zm × Zn action. Then, we can construct a graph by connecting the elements of

the set {aj, bk} with geodesics of S3, say Γ. This graph Γ is the fixed point set of

the action and it has m + n vertices. From each vertex aj of Γ, there is an edge

connecting aj to each bk. Therefore, in total, the graph Γ has mn edges, which gives

the Euler characteristic of the graph as χ(Γ) = m + n − mn. Now, consider the

tubular neighborhood of Γ in S3. This actually forms a handlebody Vg of genus

g = (m − 1)(n − 1) since the graph has (m − 1)(n − 1) holes when it is viewed in

R3.

Then, since Γ is sent to itself under Zm × Zn action, the action naturally extends to

the handlebody Vg also.
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(i) Consider the case m = 2 and n = g + 1. Then the action of the abelian

group Z2 × Zg+1 on the surface Σg extends to S3 where the embedding of

the surface in S3 is the standard embedding. Furthermore, the action on the

surface extending to S3 is cyclic if g is even, say g = 2k, since the group

becomes Z2 × Z2k+1
∼= Z4k+2.

(ii) Now we will give an example of a larger group G acting on the handlebody

Vg and extending to S3. Observe that the map t : (z1, z2) 7→ (z1, z2) gives an

action of order 2. Similarly, the set {aj, bk} is invariant under the action of t.

Therefore, the group is given as G ∼= Zm×ZnoZ2 acts on the handlebody Vg

and its action is extendable over S3.

A more specific case shows that G ∼= D2g+2 × Z2, a group of order 4(g + 1),

when m = 2 and n = g + 1. If g = 2, then this action of order 12 is a maximal

action.

(iii) Define another action s : (z1, z2) 7→ (z2, z1) of order 2, where {aj, bk} is

invariant. In this case the group G with extendable action on Vg is given by the

semidirect product G ∼= (Zm × Zn) oφ (Z2 × Z2).

For the case where m = n = k + 1 for some k , the semidirect product of the

groups is given by the following relations:

sxs−1 = y, sys−1 = x, txt−1 = x−1, tyt−1 = y−1

where Zk+1 × Zk+1 =< x, y | xy = yx, xk+1 = yk+1 = 1 > and

Z2 × Z2 =< s, t | st = ts, s2 = t2 = 1 >.

The graph Γ we constructed before, by joining each aj to every bk has m+n =

2k + 2 vertices and mn = (k + 1)2 edges. Therefore, χ(Γ) = 2k + 2 − (k +

1)2 = −k2 + 1. Now, consider a neighborhood of the graph Γ, which forms a

handlebody in S3. Also, the genus of that handlebody is g = k2 as discussed

before.
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a0 b0

a1 b1

a2 b2

a0b0

b1a1

a2 b2

For example, the above graphs represent the same graph, which is for the case

m = n = 3. However, the second one makes it easier to see that the neighbor-

hood of the graph has indeed genus g = 4. In that case, the order of the group

with extendable maximal action is 4mn = 36.

Example 4.0.2. Let us construct a Z2g−2 action on the handlebody Vg where g is odd.

Let S3 be the unit sphere in C2, i.e. S3 = {(z1, z2) | |z1|2 + |z2|2 = 1}. Also, note

that a solid torus T in C2 is given by T = {(z1, z2) ∈ S3 | |z1| ≤
√

2
2
}.

Let us choose g−1 pairs of points (ak, bk), k = 1, ..., g−1 such that ak = (

√
2

2
e

2kπi
g−1 ,

√
2

2
e
kπ
g−1 )

and bk = (

√
2

2
e

2kπi
g−1 ,

√
2

2
e

(k+g−1)πi
g−1 )

Consider the disc Dk containing the points ak and bk, i.e. Dk = {(re
2kπi
g−1 , z2) ∈

S3 | r ≥
√

2

2
}. Then there is a diameter γk of Dk connecting ak to bk. Consider the

tubular neighborhood Nk of the diameter γk in S3. If one sees the tubular neighbor-

hoods Nk (k = 1, ..., g − 1) as 1-handles attached to the solid torus T then this gives

an embedding of the handlebody Vg into S3.

Hence, the Z2g−2 action on S3 is given by σ : S3 → S3 such that (z1, z2) 7→
(z1e

2kπi
g−1 , z2e

kπi
g−1 ). T is invariant under this action and maps Nk to Nk+1mod(g − 1).

(see Figure 4.1 for the action when g = 5)

Example 4.0.3. Let S3 = {(x, y, z, w) | x2 + y2 + z2 +w2 = 1}. Then we can embed

S2 into S3 by letting S2 = {(x, y, z, 0) | x2 +y2 +z2 = 1}. LetG be a finite subgroup

of O(3) acting on the sphere S2. We will define an action on S3 by using the action

of G on S2. For every σ ∈ G, define σ̃ : S3 −→ S3 by
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Figure 4.1: Z2g−2 action on V5[20]

σ̃(x, y, z, w) =

(σ(x, y, z), w) if σ is orientation− preserving

(σ(x, y, z),−w) if σ is orientation− reversing

Then the group G̃ consisting of the elements σ̃ is a finite subgroup of SO(4) and S2

is invariant under the action of G̃. Now consider a regular tetrahedron with vertices

{v1, v2, v3, v4} lying on the sphere S2 and let G be the symmetry group of the tetra-

hedron, i.e. G ∼= S4. In that case, the set of vertices is invariant under the action

of G ∼= S4 and G̃. Let X be a punctured sphere S2 from the points {v1, v2, v3, v4}.
Also, call the tubular neighborhood N(X) of X in S3 as V3, which is a handlebody

with genus 3. Then the group G̃ acts on the pair (V3, S
3). Since the map φ : G → G̃

defined by φ(σ) = σ̃ gives an isomorphism, |G̃| = |S4| = 24. Since G̃ acts also on

the boundary of V3, which is a surface with genus 3, this case is an example of an

extendable group action on a genus g = 3 surface with |G̃| = 24 = 12(g − 1).

Similarly, by letting the group G to be the symmetry group of a cube or a dodeca-

hedron, we can find the group G̃ as the groups S4 × Z2 and A5 × Z2 for g = 5, 11

respectively. Both of the examples also satisfy the property |G̃| = 12(g − 1).

Example 4.0.4. Let us denote the 4-dimensional regular Euclidean simplex by ∆,

and denote the 4-dimensional Euclidean cube centered at the origin and inscribed

in S3 by Θ. The radial projections of the boundaries of ∆ and Θ to S3 give two

regular tessellations of the 3-sphere, denoted by ∂∆ and ∂Θ. Let vi be the number of

the i-th cells for the tessellations of ∂∆. Then they are computed as v0 =
(

5
1

)
= 5,

v3 =
(

5
4

)
= 5, v1 =

(
5
2

)
= 10 and v2 =

(
5
3

)
= 10. The boundary surface of the regular
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neighborhood of the 1-skeleton of this tessellation will give the surface Σg. Note that

the genus of this surface needs to be g = v1− v0 + 1, in this case g = 10− 5 + 1 = 6.

Every 3-dimensional face of this tessellation is a tetrahedron, whose symmetry is of

order 12. Since v3 = 5, a group G of order 12× 5 = 60 is acting on the tessellation

∂∆ and on Σ6. Hence, 60 = 12(g − 1) is satisfied for g = 6, which is an example of

an extendable action on Σ6 to S3.

Now, consider ∂Θ. It is indeed a product of a cube with an interval. Note that for this

tessellation we have v0 = 8× 2 = 16, v1 = 12 + 12 + 8 = 32, v2 = 24 and v3 = 8.

Therefore, the genus of the boundary surface of the regular neighborhood of its 1-

skeleton is g = 32 − 26 + 1 = 17. The symmetry group of the every 3-dimensional

face, which is a cube, has order 24. Since, v3 = 8, 8 × 24 = 192 = 12(g − 1) is the

order of the group G acting on the surface Σ17 which extends to S3.

Example 4.0.5. The Poincaré homology 3-sphere can be obtained by identifying pairs

of faces of a dodecahedron. It is also can be seen as the quotient space of the action

of the binary icosahedral group I∗ on S3, i.e. S3/I∗. Note that the quotient map

p : S3 → S3/I∗ gives a tessellation for S3 by dodecahedrons. The order of its deck

transformations group is 120 while the order of the symmetry group of dodecahedron

is 60. Therefore a group G of order |G| = 120 × 60 = 7200 is acting on this

tessellation of S3 and also on the boundary surface of the regular neighborhood of its

1-skeleton, which is Σg. Let vi be the number of the i-th cells of the tessellation. The

genus g of the surface is given by g = v1−v0+1. Note that χ(S3) = v0−v1+v2−v3 =

0 and v3 = 120, v2 = 120 × 12/2 = 720. So, v1 − v0 = v2 − v3 = 600 and hence

g = 601. This is an example of a maximal extendable group action on the surface

Σ601 with |G| = 12(g − 1).

Example 4.0.6. Let P be an oriented pair of pants with an orientation induced on

∂P = {c1, c2, c3} and let S1 be represented by an oriented curve h, as in the Fig-

ure 4.2.

Let M ′ = P × S1. The three boundaries of M
′

are three tori, being S1 × S1. Glue

three solid tori Ni to these boundaries so that the meridian of Ni is glued to a curve

li = 2ci + h, for i = 1, 2, 3. Let us denote this manifold by M .

Then M has the following properties:
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Figure 4.2: an oriented pair of pants and an oriented circle

(i) Note that the symmetry group of of the pair of pants is given by GP = D3×Z2,

where the action of D3 on P is orientation-preserving and the action of Z2

on P is orientation-reversing, which interchanges the inner and outer surface

of P . The GP = D3 × Z2 action on P can be extended to an orientation

preserving action on P × S1 by sending D3 to the identity of S1 and and Z2 to

an orientation reversing involution of S1.

(ii) Since π1(P ) ⊆ π1(P ) × π1(S1) and the map π1(P ) × π1(S1) → π1(M) is a

surjection, the map π1(P )→ π1(M) is also a surjection.

π1(∂(P × I))

π1(P )

π1(P )× π1(S1) π1(M)

Note that the boundary of the regular neighborhood of P in M is a genus 2

surface Σ2. To see this, first observe that we can see the pair of pants as a

2-disc with two open discs removed. Then P × S1 can be seen as a genus 2

surface if S1 is considered as an interval I identified from its boundaries.

Figure 4.3: obtaining M ′ from the pair of pants
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Also, ∂(P × I)→ π1(P ) is a surjection. From the diagram above, we see that

π1(∂(P × I)) → π1(M) is also a surjection. On the other hand, we observed

that ∂(P × I) is Σ2. Therefore, π1(Σ2)→ π1(M) is a surjection.

(iii) M is a spherical 3-manifold with π1(M) = Z3×Q8 whereQ8 is the quaternion

group, and |π1(M)| = 24 [12].

Consider the map p : S3 → M . By (ii) and Lemma 3.1.1 the preimage of Σ2 in M

is connected. Also, we know that Σ2 has a covering Σh such that χ(Σh) = 2− 2h =

π1(M)χ(Σ2), so h = 25. Therefore the surface Σ25 is invariant under the action of

the group of order 24× 12 = 12(g − 1).

Example 4.0.7. Consider the link with three components given in the Figure 4.4 and

perform −1 surgery on it. By finding its Wirtinger presentation one can find the

fundamental group of the resulting manifold M as π1(M) =< x, y, z | x = yz, y =

zx, z = xy > (p.305,[14]). If (x, y, z) 7→ (i, j, k) then π1(M) ∼= Q8. So, the

manifold M is indeed S3/Q8.

Choose two points in R3 such that one of them is in front of the link and the other

is behind the link. Then connect these two points with strings which pass through

every link component, and form the θ-graph shown in the Figure 4.4. The boundary

surface of a regular neighborhood of the θ-graph is a genus 2-surface Σ2. Then there

is a group G acting on S3 keeping Σ2 invariant and of order 12. The G-action also

keeps the link invariant and it extends to the surgered solid tori. The lifted action

on S3 has order 96. Note that π1(θ) is generated by x−1z and x−1y. Therefore, the

homomorphism π1(θ) → π1(S3/Q8) is surjective. Then by the Lemma 3.1.1, the

lift of Σ2 is connected. As in the previous example, we obtain a surface Σh such that

2−2h = 8×(2−2×2). So, the action is extendable on Σ9 with |G| = 12(9−1) = 96.

Moreover, one can obtain the Poincaré homology 3-sphere P by performing +1

surgery on the trefoil knot given in Figure 4.5. Its fundamental group is computed

in [14] as π1(P ) =< u, x | u3 = x5 = (xu)2 > where u = yx. It is indeed iso-

morphic to the binary icosahedral group I∗ with u 7→ 1+σi+δj
2

and x 7→ σ+i−δk
2

for

σ =
√

5+1
2

and σ =
√

5−1
2

.

The σ-graph is constructed similar to the above. The boundary of its regular neigh-
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Figure 4.4: θ-graph for the link with three components [20]

borhood will give a surface Σ2 such that its lift is connected by Lemma 3.1.1, hence is

Σ121.. Hence, there is an extentable action of a group G with |G| = 120× 12 = 1440

on Σ121.

Figure 4.5: θ-graph for trefoil [20]

Example 4.0.8. Let O denote the octahedral group of order 24. Let O×O denote the

preimage of O × O under the 2 : 1 map SO(4)→ SO(3)× SO(3). Then O× O, of

order 24× 24× 2 = 1153 = 12(97− 1), acts on S3. It is shown in p.129 of [5] that

its prefundamental domain is a truncated cube inscribed in S3.

In [5], a prefundamental domain centered at 1 ∈ S3 is defined to be the set of all

points in S3 which are closer to 1 than to any point in the orbit of 1 ∈ S3. After

forming the prefundamental domains, fundamental domains in S3 for the group ac-

tions are determined, which gives the rules for gluing the domains resulting in their
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quotient spaces.)

Let two of these truncated cubes be adjacent by an octagon. Then one can get a

graph by drawing an edge between the centers of these prefundamental domains. the

boundary surface of a regular neighborhood of this graph gives a surface Σ97, on

which O× O has an extendable action.

Similarly, consider the preimage of O× J acting on S3, denote it by O× J. Note that

it has order 24× 60× 2 = 2880 = 12(241− 1). In [5], its prefundamental domain is

given as a twice truncated tetrahedron. If two of these domains are adjacent to each

other by a dodecagon, then there is a graph when their centers are connected with an

edge. Hence the boundary surface of a regular neighborhood of this graph a surface

Σ241, on which O× J has an extendable action.
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CHAPTER 5

CONCLUSIONS

In this thesis, the aim has been to give a survey of extendable finite group actions on

surfaces to 3-sphere. To reach this aim, we have laid down the motivation in chapter

1 and have given necessary basic background from group actions, low dimensional

topology and orbifold theory in chapter 2.

In chapter 3, we have given a detailed proof of the theorem if the action of a finite

group G of order 12(g−1) on Σg can be extended to S3 through some unknotted em-

bedding, then the genus of the surface is {2, 3, 4, 6, 9, 11, 17, 25, 97, 121, 241, 601}.
The proof was based on the theory of the handlebody orbifolds, since an unknotted

embedding gives a Heegaard splitting of S3. Other two important theorems that we

have presented detailed proofs in this chapter were about the maximum orders of the

abelian and cyclic groups that have extendable actions on Σg to S3. The maximum

orders for abelians it has to be 2g + 2 and for cyclic ones it is 2g + 2 if g is even and

2g − 2 if g is odd. We have given some interesting examples of extendable actions in

chapter 4.

One can also wonder about what happens if the embedding is knotted. There has also

been some results on that a detailed explanation can be found in [21]. Let us denote

the maximal order of the finite group which has an extendable action on Σg to S3 with

respect to some embedding byOEg andOEu
g if the embedding is unknotted andOEk

g

if the embedding is knotted. We have seen that 4(g+ 1) ≤ OEu
g ≤ OHg ≤ 12(g− 1)

whereOHg be the maximal order of all finite groups which can act on Vg. It is a result

due to Zimmermann [9] that 4(g + 1) ≤ OHg ≤ 12(g − 1), moreover OHg is either

12(g − 1) or 8(g − 1) if g is odd. However, in general OHg are not determined yet.
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For an extendable action, if |G| > 4(g − 1), all possible relations between the order

of G and genus g are listed in the following table. The subindex ‘k’ means the action

is realized only for a knotted embedding, the subindex ‘uk’ means the action can be

realized for both unknotted and knotted embeddings. If the action is realized only for

an unknotted embedding, there is no subindex.

|G| g

12(g − 1) 2, 3, 4, 5, 6, 9uk, 11uk, 17, 25, 97, 121uk, 241uk, 601

8(g − 1) 3, 7, 9, 49, 73

20(g − 1)/3 4, 16, 19, 361uk

6(g − 1)− I 2, 3, 4, 5, 9uk, 11, 17, 25, 97, 121uk, 241uk

6(g − 1)− II {2, 3, 4, 5, 9, 11, 25, 97, 121, 241}uk, 21k, 481k

24(g − 1)/5 6, 11, 41, 121

30(g − 1)/7 8, 29, 841, 1681

4n(g − 1)/(n− 2) (n− 1), (n− 1)2

Observe that, except finitely many cases we have OEu
g > OEk

g and for finitely many

g we have OEu
g = OEk

g but we also have OEu
g < OEk

g for g = 21, 481. There are

also some g such that OEk
g = 12(g − 1).

Even though we have these above relations between the genus and the maximum

order of extendable actions on Σg to S3, for a fixed genus we do not know which

actions are extendable. For future study one can look at the problem of classifying

the extendable finite group actions on a fixed low genus g surface.
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